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Introduction

Researchers in the field of ultra-intense laser science are beginning to embrace 
machine learning methods for control and optimization of secondary particles and 
radiation [1,2,3]. In this study we consider three different machine learning methods 
and compare how well they can learn from a synthetic data set for proton acceleration 
in the Target Normal Sheath Acceleration regime that we generated using a 
modification of the Fuchs et al. 2005 [4] model. This allows us to compare the machine 
learning models to each other and to the intrinsic noise level that was added to the 
data. We also provide results on the computational performance and memory 
consumption of the machine learning methods, which are important considerations 
for quasi-real time operation of these methods on real experiments. 
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Synthetic data is 
generated from an 
analytic model by 
Fuchs[4] with some 
modifications including 
noise at different levels. 

Variable Inputs Output (Energies)

Intensity Maximum Proton

Target Thickness Total Proton

Focal Distance Average Proton

FIG 1: Distribution of Maximum Proton Energy as a function of Laser 
Peak Intensity and Focal Distance (left) and of Target Thickness and 
Focal Distance (right) from 100,000 randomly generated data points 
generated by the Fuchs Model. The inputs have the following ranges: 
Intensity (1018 → 1019 W cm

_2), Focal Distance (−10 → 10 𝜇m), 
Target Thickness (0.5 → 10𝜇m). The Fuchs model yields the highest 
energies for small target thicknesses, high intensities, and focal 
distances close to 0.

Note: The intensity, target thickness, and focal distance ranges were 
chosen to mimic the experimental ranges in Morrison et al. 2018 [5]

Fixed Inputs Value

Wavelength 0.8 𝜇m

Spot Size 1.5 𝜇m

Pulse Duration 40 fs (FWHM)

RegressionSupport Vector 
Regression (SVR)

Gaussian Process 
Regression (GPR)

Neural Network 
Model (NN)

3 Nodes 
(Input Layer)

64 Nodes 
(Hidden Layer)

16 Nodes 
(Hidden Layer)

3 Nodes 
(Output Layer)

• PyTorch Library
• Fully Connected
• Leaky ReLU Activation 
• Adam Optimizer, 35 Epochs

• Rapids AI Library
• Epsilon: 1e-3
• Tolerance: 1e-4
• Kernel: RBF

• GPyTorch Library
• Learning Rate: 1e-1
• Tolerance: 1e-4
• Kernel: RBF

Preprocessing
• Logarithmic Scaling 

on Intensity and 
Output Energies

• Standardization (Z-
score) of all 
variables

• Train models on more realistic data that explores the parameter space as a real 
experiment would (i.e. no random sampling of parameter space)

• Train models on ~1 million synthetic data points to prepare for experimental data 
from ~kHz repetition rate lasers and consider practicalities of training models in 
quasi-real time.

• Use trained models to predict inputs that correspond to desired outputs (i.e. 
optimization and control)

FIG 3: Root Mean Square Error (RMSE) as a 
function of the added gaussian noise level for 
a model trained on 20,000 data points for the 
maximum proton energy. Numerical 
instabilities in the GPR algorithm caused the 
model to perform significantly worse for the 
5% noise dataset.

FIG 2: Testing Mean Absolute Percentage Error (MAPE) as a function of the number of training data 
points for (a) maximum proton energy, (b) total proton energy, and (c) average proton energy using a 
Fuchs dataset with 10% added gaussian noise. The “Ideal” dotted line is the MAPE between the noiseless 
and noisy models and a perfect model unaffected by the noise would reach this limit. The testing data set 
is kept fixed at 5,000 points here and for all the plots on this poster. 

FIG 4: Total training 
time as a function 
of the number of 
training points for a 
Fuchs Data set with 
10% added noise.

FIG 5: Amount of GPU 
memory utilized on 
average as a function 
of the number of 
training points for a 
given model. 
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