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ABSTRACT
The study of many-particle systems is usually very hard; different types
of approximations are often needed to make any progress. Especially
hard are systems with non-linear behavior that are sensitive to initial
conditions. However, some non-linear systems have astonishingly
periodic motion despite the complex nature of their interactions. We
focus on the paradigmatic system of cold bosons in one dimension
called the Lieb-Liniger model, a highly tunable system that can provide
insight on a variety of condensed matter systems. In addition, the
Quantum Newton's Cradle experiment by Kinoshita, Wenger, and Weiss
at Penn State recently showed that these systems are actually
realizable in the practical world. We detail a molecular dynamics
simulator that is able to capture the hydrodynamic description of the
gas using classical physics and report our success in implementation.

Lieb-Liniger Model
The Lieb-Liniger Model (LL) describes a system of N bosons that interact
via contact with strength c.

Defined in 1D with periodic boundary conditions (i.e. on a ring)

Quantum Newton’s Cradle
The QNC experiment [1] describes a LL gas clustered at the bottom of a
potential well. Half of the bosons are kicked left (and the other half to
the right) and the gas is evolved over time.

FIG 1 (a): The Newton’s Cradle is a
physics based toy that demonstrates
conservation of energy and
momentum. It is a classical system of
many particles that has regular,
periodic motion.

FIG 1 (b): Distribution of bosons over
time in The Quantum Newton’s Cradle
setup. The purple area shows the
bosons’ positions and the blue arrows
indicate their velocities. The bosons
oscillate in an anharmonic potential
well.

Image Taken from Kinoshita et. al. [1]

Flea Gas Algorithm
Due to integrability, the QNC system can be modeled using generalized
hydrodynamics (GHD). GHD groups particles into fluid cells that contain
interactions slowing the gas down to an effective velocity [2]

This velocity reduction can be, instead, thought of as instantaneous,
backward “quantum jumps” that occur at particle collisions whose
distances are dependent on the colliding velocities

Jumps can cause more collisions which can cause a chain reaction of
jumps that are likened to fleas.
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RESULTS

FUTURE WORK
Equipped with an algorithm to compute the dynamics of the LL gas out 
of equilibrium, we can now study the gas within the QNC setup. In 
particular, we hope to explore a system of two LL gases that interact 
with each other in such a way that breaks integrability. This is 
important because the dipolar QNC (recently created by Tang et. al. [3] 
consisting of highly magnetic dysprosium atoms) is an experimental 
realization of exactly the type of interacting system we wish to study.  
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The QNC experiment is interesting because the bosons have regular
periodic motion (as opposed to thermalization and chaos). The 
integrability (infinite amount of conserved quantities) of the LL model 
is the cause of this type of motion and the experiment showed that 
these idealized systems are possible to realize in the practical world.

FIG 2: The effective velocity of a LL gas of 1,500 particles is evaluated using a truncated
gaussian initial distribution of velocities and a uniformly spaced gas under periodic
boundary conditions. The red curve is the exact curve given by the effective velocity
equation and the blue points are evaluated using the flea gas algorithm. (a) Our results
seem to be in decent agreement with (b) the results of the paper [2] where the flea gas
algorithm is outlined.
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